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Geometric Approaches to Mesh Generation'

Christoph M. Hoffmauut

Department of Computer Science
Purdue University

West Lafayette, IN 48907-1398

Abstract

We review three approaches to mesh generation that are hased on ana
lyzing and accQuntingfor the geometric structure of the domain. In the first
approach, due to Armstrong, the domain is partitioned into subdomains
based on the medial-axis transform, a tool for analyzing spatial structures.
In the second approach, due to Cox, the design history defines a geometric
structure of the domain. The design primitives of that structure are meshed
separately; and mesh overlap is acconnted for by cOltpling equations. The
third approach argues that mesh generation ought to be integrated into the
shape design process, by meshing design features separately and resolving
overlapping meshes by standard geometric computations.

1 Introduction

The problem of meshing a geometric domain has two aspects, a physical aspect
that accounts for the behavior of the solution of the physiC-al problem, and
a geometric aspect that accounts for the shape of the domain. Applications,
such as in manufacturing, not only involve analyzing specific domains in two
or three dlmensions, but also involve design computations that produce the

"I{eynote Presentation at the lMA Summer Program on Mesll Generation, University of
Minnesota, June 1993.

'Supported in part by ONR Contract NOOOl4-90-J-]S99, by NSF Grant CCR 86-19817,
and by NSF Grant ECn 88-03017,

IThis and otller reports are available via anoymous ftp to artlmr.es.pllrduc,cdu, in directory
pub/emil.
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shape in the first place. Despite the fact that applications require both, the
more geometric activity of designing a shape and reprcsp.IIting its geometry
has develo])ed separately from the analysis side that is devploping techniques
to solve physical problems by numerical or semi-Ilumerical techniques. It is
unfortunately rare to find workers versed in both tIle intricacies of the geometric
side as well as the physical side of the problem.

In this paper we pay attention to the geometric side of the problem, primarily
because of the perceived need to create a greater awareness of the geometric side
of things in the community of numerical analysts and applied matllematicians.
We consider three different approaches.

In the first approach, the geometric structure of the domain is analyzed
using the mecUal axis transform, a concept made popular in computer vision,
but found elsewhere in a variety of equivalent or closely-related formulations.
Here, we discuss the work of Cecil Armstrong, althou~ll other researchers and
groups have pursned a similar tack and employed the medial axis transform as
well.

In the second approach, a specific design paradigm is coupled with the pro
cess of mesh generation. A domain is thought of as a Boolean combination
of primitive shapes, each easily meshed. In combination, the domain is then
covered with a number of overlapping meshes, and the physical problem formu
lation resolves the overlap by certain coupling equations that force compatibility
of the solution in the overlapped region. We discuss here work by Jordan Cox,
but also refer the reader to work by others, in p<Lrticular the work of William
Henshaw in this volume.

In the third approach, we discuss some of the modern feature-based design
paradigms that are evolving especially in mechanical design. Having argued
elsewhere that this design paradigm ought to be supporled by a separate repre
sentation, [15], we advocate here that the high-level feature representation would
be dlrectly translated into finite-element meshes, so that the mesh is built up in
step with the creation of the domain itself. This requires only a few additional
operations and produces, in contrast to the second approach, nonoverlapped,
compatible meshes.

We begin our exposition with a brief summary of gp.ometry representations.
While in two dimensional situations it is quite straightforward to devise simple
and intuitive shape representations, in three-space the representation of geomet
ric shapes becomes cumbersome and, at first glance, may appear overly complex
to the nonspecialist. Nevertheless, to-date simpler three-dimensional represen
tations llave not been found, at lea.<>t not without accepting severe restrictions
on the geometric coverage; Le., on the range of possible shapes.
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Figure 1: Set-theoretic and Regularized Intersection of two Shapes

2 Solid Modeling Representations

Solid modeling hM produced three major families of shape representations,
constructive solid geometry, boundary representation, <Luci spatial subdivision.
There are other representations that completely define a solid, three-dimensional
domain; for instance, the medial-axis transform. As these are not in wide lise,
we will not discuss them, except to the extent that they are relevant to specific
aspects of lllesh generation. Also omitted is a descrilltion of representations
such as wire frames, that do not define a solid shape unambiguously.

2.1 Constructive Solid Geometry

In constmctive solid geometry (eSG), (24), a complex shape is built from prim
itive shapes by operations of union, difference and intersection. The primitives
are specified by a few shape parameters. Customarily, the primitives are a
block, parameterized by three side lengths; a sphere, parameterized by radius; a
cylinder or a cone, each parameterized by radius and height; and a torus, param
eterized by major and minor radius. One assumes that each of these prinutives
are at a default location in a local coordinate frame. The local frames are re
lated to a global frame by rotation and/or translation, and the primitives so
positioned are combined with the operations of regularizpd muon, regularized
difference, and regularized interseetion. A regularized operatiOll differs from
a set-theoretic operation in that lower-dimensional structures of the result are
"removed." For instance, in Figure I the set-theoretic intersection of the block
B and the L-sbaped object A is shown in the middle. It consists of a block and
an attached "dangling" face. The regularized intersection is shown on the right,
and has no isolated lower-dlmensional structures. To obtain a regularization
one computes conceptually the closure of the interior of the set-theoretic. result.
In practice, regularization is incorporated into the algorithms that implement
the Boolean operation. The details depend on the representation.

In pure eSG, a complex shape is simply an algebraie expression formed from
operands that are the name and parameter value(s) of the prinutives used, and
from operators that represent the regularized Boolean operations and rigid-body
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motions. The expression can be represented internally by a tree, and a number
of geometric operations, sllch as testing whether a given point is insi<le, outside,
or on the surface of a three-dimensional object, can be implemented as a suitable
tree-traversal. For details see, e.g., [10, 19]

2.2 Boundary Representation

In boundary representation (Brep) one describes the surface of a solid domain
as a collection of faces, edges, and vertices, along with the adjacencies between
them. There are many variants differing in detail conventions, but all describe
the surface by specifying faces, edges and vertices and thpir adjacenciesj see,
e.g., [10, 191.

The description of a face has two parts. A surface is specified of which the
face is a subset. The surface can be an implicit, a paraIllelric, or a procedurally
defined surface. In addition, the boundaries of the face arc described, IJy edges
and vertices. In some versions of a Brep, the bounding edF;cs and vertices are
organized into closed loops, along with information on the nesting of loops.

The description of an edge consists of the definition of a space curve of
which the edge is a segment, and of the vertices bounding the segment. The
curve might be the intersection of two surfaces, or a parametric space curve, or a
procedurally defined curve. A vertex is typically described by point coordinates.
Some versions restrict the topological structure of a face to be homeomorphic
to a unit disk with zero or more internal holes.

An elaborate convention of orientations designates on which side of a face
to find the interior of the solid, and on which side the exterior. Furthermore,
orientation conventions tell on which side of an edge, embedded in the surface
of the face, to find the face interior. Likewise, one can cletermlne on which side
of a vertex, on a space curve, to find the interior of an edge. These conventions
are in part explicit, and in part implicit. For example, at a vertex it is not
uncommon that a computation on the incident faces and edges is needed to
determine a direction into the interior of the solid.

In early boundary representation schemes the snrface was required to be a
closed, orientable manifold in 3-space. This restriction is too narrow in that
regularized Boolean operations with such "manifold solids" can result in nou
manifold solids which would then be invalid objects. Therefore, noumanifold
boundary representations are becoming the norm.

Most commercial solid modelers, and many research solid modelers use a
Brep as iuternal solid representation despite the greater demands on storage.
One of the factors influenciug this decision is the option, in Brep, to lise faces
that are part of a spline surface, so that the large variety of shapes studied in
computer-aided geometric design can be used in solid modeling. This increases
tIle srope of solid modelers, and is required in applications such as aerospace
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and shipbuilding, as well as in the design of automobile bodies.

2.3 Spatial Subdivision

Some solid modeling systems use a spatial subdivision scheme. In such a scheme,
the volume of the solid is represented as the union of adjacent, nonoverlapping
cells. If the cells have a fixed shape such as cnbes oriented along the principal
Cartesian directions, then the representation is typically approximate. When
the cubes are regular in size, we obtain voxel representations; e.g., [17J. If the
cubes are obtained by an adaptive subdivision of a large cube, we obtain odree
representations; e.g., [4, 25J.

Irregular subdivisions can be boundary-conforming. Here, a given shape is
(nearly) exactly the union of cells or irregular size and orientation. For example,
tbe binary space partition tree [21J is such a representation and can represent
any polyhedral sllape exactly. Subdivisions sucb as Delaunay triangulation of
domains, discussed by others in this volume, also represent polyhedra ~xactly.

By mapping techniques, e.g. [30], curved domains can also be represented ex
acl.ly.

Subdivision representations have not been used widely in solid modeling.
They are the representation of choice in analysis problems solved by numerical
integration.

2.4 Dual-Purpose Representations

Nonmanifold hOlmdary representations, e.g., [31], have been advocated as rep
resentations that serve both the needs of analysis and of solid modeling. Since
in such representations faces internal to the solid are pNmittecl, nonmanifold
boundary representations can represent spatial subdivisions. However, since
they conform to the requirements of llOundary representations, with complex
data structures to designate face areas, edges and adjacencies, it seems that
using nonmanifold Breps for complete meshes would unnecessarily add to the
storage requirements. However, a subdivision of the domain into a Smallll11111
ber of subdomains, each containing a part of tIle mesh in a more traditional
representation, might advantageously be represented usin,e; nOlllllanifold Breps.

3 MAT-Based Mesh Generation

The medial axis transform (MAT) is a shape abstraction inlroduced l>y Blum
[3J in computer vision. The concept plays a role in some approaches to mesh
generation because it provides an algorithmic way to partition domains into
su bclomains tbat are relatively easy to mesb, and compatibly so. We explaill

5



./

- .
'.

"-.!

\........":\1"/------'"

.... '., ....J.
\.... '>/
(.... ....

Figure 2: L-shaped Domain, Its Medial Axis, and Several Maximal Circles

the basic concepts, and then discuss in some detail Armstrong's method for
meshing two- and three-dimensional domains [2, 1]. For other approaches to
mesh generation using the MAT see [22, 28, 32].

3.1 Medial-Axis Transform

Let S be a compact two-dimensional domain with continuous boundary of finite
length. The medial axis (MA) of S is the closure of the loens of all Illaximal
inscrilled disks. An inscribed disk D is maximal if there is uo oUler inscribed
disk D' that properly contains D. See also Figure 2. Medial axis points can be
classified by type, [3]. A normal point is the center of a disk that touches the
boundary in two distinct point. In the figure, two snch disks are sllOwn labeled
N. A juncture or branch point is the center of a disk that touches the boundary
in three or more points. Two such disks are shown in the figure labeled J. An
end point is one whose disk has zero radius or whose disk touehes the boundary
in exactly one point. The MA points at the five convex corners of the domain
are an example. A point has finite contact if it is the center of a disk that
touches the domain boundary in an arc of nonzero length.

The medial axi,';; t1'an4017n (MAT) of S is the medial axis of S llhts a function
that assigns to each lloint of the medial axis the radius of the disk centered
there. Both concepts generalize to three-dimensional domains when considering
inscribed spheres in place of inscribed disks.

Blum considered the MAT as shape abstraction, and conjectured that the
native representation of the human vision system was related to the MAT. The
medial axis transform of a 2D domain can be thought of as a 3D graph, lly
considering the radius a third coordinate. To obtain a closely related concept, we
assign to each point of the domain its minimum distance to the domain boundary
as value. We so obtain the Euclidean distance function of the boundary. With
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Figure 3: MAT of the L-shaped Domain, as Singularities of the Elldidean Dis
tance Function

the convention that interior points have positive distance and exterior points
negative distance, the graph of the distance function is a certain surface, as
illustrated in Figure 3. Offsets of the boundary are then the intersection of
the distance surface with a parallel plane whose elevation above (or below, for
exterior offsets) is equal to the offset distance. The medial axis transform is
simply the locus of first-order discontinuities of the distance function. Thus, Wf'.

can also think of the medial axis as shock waves of a wave front that initially is
on the domain boundary and propagates inward.

Around the turn of the century, MillIer [20) formulated the concept of cyclo
graphic map, developing ideas dating back to LaguerrQ. Given an oriented curve
C in the plane, Miiller considers oriented circles tangent to the curve. At a curve
point, the centers of these circles are on the curve normal. He associated with
each circle a llOint in 3-space above the center at a distance equal to the radius,
for positively oriented circles. For negatively oriented circles, the point is below
the center at a distance equal to the radius. All such associated points therefore
lie on a line L that has an angle of 45° with the plane and projects orthographi
cally onto the curve normal, as illustrated in Figure 4. Thus, an oriented curve
is mapped to a ruled Sllrface in 3-space which defines the cyclographic map of
the curve [20]. A subset of the surface is the graph of the Euclidean distance
function, and the MAT is part of the singularity structure' of the cyclographic
map.

Figure 4: The Cyclographic Mall at a Curve Point

7



In [5, 6, 12], it is proposed to compute the medial axis transform based on
Danielson's algorithm and on the dimensionality paradigm; [R, 11, 16]. Other
approaches include approximating the medial axis points from the c.ircum cen
ters of Delaunay triangles when triangulating a point set dense in the domain
boundary; e.g., [29]. Note, however, that a topological classification of the De
launay triangles is required to locate "missing" sections of the MAT not so
approximated. When the geometric elements comvrising the domain boundary
are suitably restricted, other algorithms are possible; e.g., [2:l, 18,27,22].

3.2 Armstrong's Mesh Generation

Armstrong considers quadrilateral mesh generation in 2-spac(I, and hE'xahedral
lllesh generation in 3-space. Both algorithms have tlw same overall structure,
but the classification work in 3-space is much more complex than in 2-space.
Srinivasan [27] and Patrikalakis and Giirsoy [22] have MAT-based meshing al
gorithms that differ both in the type of meshing and in the way in which the
domain is partitioned. Those algorithms have not been extended to 3D domains.

3.2.1 2D Meshing

Armstrong's algorithm proceeds as follows:

1. The domain boundary is discretizcd and from the points on it a Delaunay
triangulation is constructed.

2. By classifying how certain triangles touch the domain boundary, branch
points of the MA are determined, as well as how the branch points are
interconnected. This classification is used throughout the algorithm.

3. At highly concave corners the domain is subdivided by an internal split.

4. MA branch points and end points of the domain are analyzed, and, de
pending on type and conHguration, the domain is subdivided into subdo
mains that aTe 3-, 4-, 5-, or 6-sided.

5. For each type of subdomain, a standard mesh is detf'flll.ined. Compat
ibility across subdomains is achieved by formulating integer constraint
equations and solving an integer programming problem.
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Boundary Delaunay Triangulation

In a Delaunay triangulation of a point set, the circum circle of cach triangle does
not contain other points of the triangulation. Therefore, when the points are
dense in the domain boundary, the circum circles approach maximal inscribed
circles. Note that c.ertain segments of the MA cannot be aPllToximated in thls
way [12).

Arlllstrong has his own variant of constructing the trianp;ulatiotl in order
to integrate it with a classification of the trlangles and dl.'.termining MA branch
points. The boundary discretization is adaptive, and the trianp;ulation algorithm
is incremental.

Triangle Classification

Triangles are classified into Olle of 5 types. The types are derived based on how
the triangles touch the domain boundary, and are relate<1 to the type of MA
point the triangles' circum center is close to.

A triangle is of type J (junction point) if the three vertices touch three
different parts of the boundary, and none of the sides is on the boundary. A
triangle is of type C (convex corner) if one of its vertices is a convex corner and
the adjacent sides are on tIle boundary. A triangle is of type I (intermediate) if
one of its sldes Is on the boundary and is connected to a concave vertex, and the
three vertices are on three different parts of the boundary. A triangle is of type
N (normal point) if two vertices and the connecting side are on the same part of
the boundary, whereas the third vertex is on a dlfferent part of the boundary.
A triangle is of type T (topologically redundant) if all three vertices and two of
its side are on the same part of the boundary.

Mter this initial classification, triangles are further dassified based on their
adjacencies and the local geometry. For example, the type C is reclassified F at
shallow corners that are nearly 1800

• Ignoring N-trianp;les, an adjacency graph
is constructed that is a topological representation of the medial axis. We call
tltis graph the MAT graph.

Splitting Concave Corners

For the meshing algorithm, a concave corner is one at which the incident sides
subtend an interior angle of 2160 or more. Incidl'.llt to the corner are triangles
of type I. The sides of such triangles are candidates for splitting the corner.
For each choice, the resulting element angles are computed amI the chosen split
minimizes the deviation from 900

•
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Figure 5: Elimination of Shallow Convex Corners

Domain Subdivision

A number of transformations are applied to the MAT g-raph. They include
transformations such as Figure 5, or Figure G that eliminate irrelevant parts of
the medial axis, and transformations such as Figure 7, that break lip complex
topologies.

Here, E is a type that marks an end point of the MAT at which <:L specific
mesh pattern will be applied. Similarly, F marks a flat c.orn~r that is nearly
180Q

• FJ is a junction with a flat corner, at which topologically the two sides of
the fiat corner are treated as a single edge.

Eventually, the domain has been partitioned into one of nine types of sub
domains, shown in Figure 8. Armstrong calls these sulHlomains shape atoms.
Each subdomain is meshed with a standard mesh of quadrilatl"l"als.

Meshing Patterns

The subdomains are meslled using midpoint subdivision. For a triangular sub
domain, the pattern is shown in Figure 9. Note that c.ompatibility conditions
must be satisfied by the mesh pattern parameters. In the case of the triangular
subdomain, the compatibility equations are

p, (1 )

At each internal edge of the domain, the number of elelllPllts adjacent to the
edge in one subdomain must agree with the number of elements meeting the

--------- J -.------------- E
"

"
"

Figure 6: Treatment of MA Ends
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Figure 8: Possible Shapes of Subdomains; from [2]

Figure 9: Mesh Pattern by Midpoint SuhcUvision
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edge from the adjacent subclomain. This requirement is expressed by a set of
equations. For example, if the triangular subdomain of Figure 10 is adjacent to
the pentagonal subdomain as shown, then we would have to satisfy

(2)

Note that the midpoint subdivisions do not have to align.
The equations of type (1) and (2) together form a system that defines the

constraints of an integer programming problem. Target values for SOllie of the
variables call be computed from edge lengths and desirC'cl f']Ptlleut size. Aftcl'
solving the integer problem, a quadrilateral mesh of the domain has bp.cn found.

3.2.2 3D Meshing

The 3D Meshing algorithm is structured in the salle way as the 2D algorithmj
[1J. A central idea is as follows. The MAT of a 3D domain will have faces in
addition to edges and vertices. If we mesh an MAT face as if it were a 2D
domain, then the mesh can be extruded into columns over each quadrilateral of
the face mesh extending to the boundary on either side. Clearly these columns
can be divided into hexahedral elements. Figure 11 illustrates the idea.

This simple idea ignores some complications: Not all MAT faces are slutable
to this idea. For example, the MAT of a parallelepiped has a total of 13 faces,
one of which is centrally in the interior, and the other twelve connect to the
edges of the parallelepiped, as illustrated in Figure 12. Only the central face is
amenable to illesh extrusion.

Corresponding to the corner treatment in the 2D case, specific edges of
the MAT in the 3D case must be treated specially and some of the adjacent
MAT faces should be ignored. In the case of the parallelepiped, this is the ;3D
analogue of the MAT graph transformation that reclassified a J graph node with
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Figure 11: Extruding the 2D Mesh on an MAT Face; from [1]

two adjacent C nodes as an E node. Vertices of the MAT similarly require special
treatment. The resulting cases are considerably more nUIllerous and complex
than in the 2D case.

Note also, that meshing an MAT face is more complicated than meshing
a 2D domain because the face can be curved, requiring <:L geodesic version of
the 2D algorithm. With all these cOllllllexities duly noted, the 3D algorithm is
overall as follows:

1. From a 3D Delaunay triangulation, determlne the topology of the MAT
as well as the approximate location of its faces, edges and vertices.

2. Classify the Delaunay tetrahedra, and refine the classification. Determine
the adjacency graph of the MAT.

3. Isolate and classify the MAT corners.

4. Isolate and classify the MAT edges.

5. Prepare the remaining MAT faces for 20 meshing.

6. Formulate the compatibility equations and mesh the domain .

..+.:} .
... '

1.'..........
...~

Figure 12: MA of a Parallelepiped
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Figure 13: Major MAT Edge Topologies in Cross Section

Edge Classification

In general, an inscribed maximal sphere centered on an ~dge point of the MAT
touches the domain boundary at three distinct faces. Depending on whether
the touched faces aTe adjacent, fOUT cases arise; Figure 13. We see that the
MAT edge can be thought of as the spine of a polygonal tube that has between
3 and 6 sides. In consequence, such a region can be meshed by extruding the
midpoint subdivision mesh patterns the 2D meshing aJgorithm would use for
the cross sections.

Vertex Classification

In general, an inscribed maximal sphere centered at a to./fAT VC'rtex touches the
boundary at four distinct points. Each triple of touchings be)?;ins an incident
edge, and the vertex classification primarily depends on the type of the incident
edges. The c1assincation of the adjacent edges defines a subdomain around the
common vertex that is topologically characterized by a polyhedron. There are
over 20 different vertex polyhedra, and some cases are shown in Figure 14. Tl]('
meshing patterns aTe also sllOwn.
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Figure 14: Some MAT Vertex Topologies and Meshing Patterns

Face Meshes

Many MAT faces are eliminated from further consideration when edges and
vertices have been isolated into vertex polyhedra and polyhedral tubes. The
remaining MAT faces aTe meshed as follows. Compute the approximate MAT
of a face, based on shortest distance within the face, and subdivide tIle face with
the 2D algorithm. Extrude the mesh of the face.

The integer equations governing the mesh of each face lllllst be combined
with compatibility equations for adjacent edges and vertices. Fllrthenllore, the
equations for edge patterns, vertex patterns, and edge/vertex adjacency com
patibility aTe added. The resulting integer programming prolJlem determines
the final mesh.

4 Domain Composition

Recall the CSG paradigm in which a ;~D domain is constructed using regularized
Boolean operations, and the shape primitives are box, cylinder, cone, sphere,
and torus. For simple domains, consisting only of one shape vrirnitive, many
physical problems are best formulated in a natural coordinate system that siIn
plifies solvlng the problem. For example, Cartesian coordinates are appropriate
for a box domain, whereas cylindrical coordinates are better suited for cylindri
cal domains. Just as we compose the shape primitives in the geometric design of
the domain of interest, we can compose the physical problems in the same way.
This idea has been elaborated by Cox in [7] for finite element and finite differ
ence methods. It has a strong technical relationship to the idea of differencing
methods working on overlapping grids, as explained in Henshaw's contribution.

Consider the domain shown in Figure 15. We mesh separately the disk and
the square, with the mesh nodes ShOW1] as circles amI squares, respectively, in
Figltre 16. For each subdomain, the finite element problem is formulated sep
arately, using the discretization that is most natural. Along the overlapped
boundaries of the subdomaills, compatibility is enforced by coupling equations.

15
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Figure 15: Domain Composed from Square and Disk

This requires that we express the nodes on the llOundary of ODe of the sub
domains in the coordinates of the other, and vice versa, and require that the
solutions on the subdomains agree.

The cross coordinate COlllllUtations may not be simple to formulate by hand,
but the computation is quite straightforward for a geometric modeler. The
resulting problems are perhaps more complex to solve numerically, but when
sufficiently automated they aTe obtained quickly, so that t11(> overall design and
analysis cycle is sped up.

5 Geometry Compilation to Mesh Representations

Integrating design and analysis is a valuable idea, particularly in light of thf'
present functional barriers between design and analysis that exist in most soft
ware systems because of the great dl1ferences between the rf'.presentations used
for each task. Work such a.<> the meshing algorithms of Armstrong lower the
barriers, but it is clear that the meshing algorithm for 3-dimensional domains
involves a considerable amount of detail, and a full implementation is a sub
stantial effort, both in concept as well as in coding. Cox's approach is much
simpler, but its scope is narrow because it is based on a narrow range of prImitive
shapes. We explore next an approach that seeks to comlJine the strong points of
both ideas, combining them with ideas that capture advanced geometric design
concepts [15].

Recent CAD systems have a design interface in which the user composes
shapes ba.<>ed on featun~s. There is no accepted definition of feature, but it

o 0

o 0 0

o 0
o

o
o

o
oo

Figure 16: Meshing a Domain Composed [rom Square and Disk
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is widely accepted that a feature is a part of a shape that is common, has
significance to function or manufacture of the object of which it is part, and can
be desecribed in a stereotyped way. For example, in the system Pro/Engineer,
features fall broadly into three categories:

1. Volumetric features such as protrusions and cuts that add or subtract
predefined or user-defined shapes.

2. Modifying features such a.<> chamfers, rounds and blends that locally alter
shape details.

3. Reference structures (datums) that simplify specifying spatial relation
shlps and dimensions using geometric constraints.

In the design process, the user specifLes a shape as a hierarchy of features and
constraints. By giving values for dimensions and angles, this generic design is
instantiated and a boundary representation for the instance is created.

Elsewhere, [14, 15], we have analyzed this style of design and isolated the
shape structures it manipulates. Ignoring the issues that arise in eonjunction
with instantiating generic design based OIl constraints, the following shape prim
itive creation must be considered.

A 20 cross section is drawn, composed of lines, arcs, and spline curves of
some type. The cross section is used to define a :lO volume by extrusion (Le.,
a sweep along a linear trajectory), revolution (Le. a sweep along a circular
trajectory), or by a sweep along a general space curve. The cross section may
be moved as a rigid body in space, or be subjected to a transformation that
alters the shape as a function of the path traversed along the trajectory.

Such shape primitives are then combined using material addition or subtrac
tion operations. They can be implemented a.<> regularized Boolean operations.
Furthermore, material can be added or subtracted by stereotyped operations
such as chamfering or rounding edges and vertices, shelling (hollowing Ollt a
solid volume), or drafting (tapering a generalized cylinder).

This repertoire of design operations 1s remarkably flexible, for example in
mechanical design; [13]. If the design operations are formalized, as proposed
in [15], the resulting CAD system architecture looks as shown in Figure 17.
In this architecture, the design gestures made by the user in the graphical de
sign interface are recorded a.<; a high-level geometry representation 1 called au
editable representation (Erep). TIllS shape representation is then translated by
a geometry compiler into a specific shape instance, based on constraints and
dimensions. The traditional representation of this specific shape would be a
boundary representation. But from the user's point of view, the detail repre
sentation is quite irrelevant a.<> long a.<> the operations thC' user wants to do are
supported. This suggests translating to other representations, and, 1n particu
lar, to analysis 1'epresentalions in which the shape instance is represented by a
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Figure 17: New CAD System ArchitC'-Cture

finite element mesh. We elaborate on the geometric aspects of this possibility,
without regard for convenient ways to specify associated analysis attribute data
that further specifies the physical problem and boundary conditions.

The analysis of most engineering parts and assemblies abstracts away a
number of shape details of the geometric model. As the user defines features, hf'
or she can tag each one as either essential or inessential for analysis purPOSf'S.
Furthermore, the high-level Erep feature representation could include rules that
define under what conditions the feature should be removed in the analysis.
Such conditions would depend on either predefined values or on values that
would be determined as part of an adaptive analysis proeess [26J.

10 many problems, the dimensionaUty of parts of the domain is redueed.
For example, a circular hole may be replaced with its axis. It would be diHicult
to automate dimensional reduction of features based on the detailed, low-level
Brep. In contrast, it would be simple in the Erep: We associate with a feature
simplification rules. For instance, a hole with a diameter-to-length ratio less
than a certain value can be reduced to its axis. extrusions or sweeps representing
beams or plates can be similarly simplified.

In mechanical design optimIzation, one repeats a cyde that begins with a
design or redesign step, and is followed by one or more analysis steps. The
results of the analysis steps are used to reconsider design next time ronllel. The
traditional implementatIon of this loop requires translating the Brep that de
scribes the shape design into a mesh representation, interpreting the results of
the analysis manually, and repeating the design step. Note that the output of
the analysis is not suitable to alter the geometry automatically, mainly because
the association of elements with the geometry is weak. It cannot 11e strength
ened when working with a detailed boundary representation. By deriving the
analysis representation from the Erep instead, the association between feature
and elements is cUred, and it becomes possible to process tlw analysis results
to recommend automatically feature modifications and additions. For example,
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Figure 18: Union of Two Meshes by Subdivision

if an area of high stress is along a concave edge that bOr<lers two features, we
could deduce automatically that the addition of a fillet faature is advisable. So,
there are considerable advantages to be realized when approaehinl'!; the mesh
generation problem with a compilation paradigm.

Compiling to a mesh representation is not much different from c.ompiling
to ordinary boundary representation. However, different mesh operations arise
than are familiar from, say adaptive mesh generation. WP. proceed as follows:
Primitives generated from cross sections are frrst meshed ·Ill crOss sec.tion us
ing a suitable 2D meshing algorithm. Instead of sweeping the el"QSS sec.tion
to obtain a volume, we sweep the mesh itself, dividing the polygonal tubes so
generated into elements. Just as sweeps along trajec.tories of varying curvature
require special computations to detec.t self-intersections of the swept boundary,
swept meshes must be similarly analyzed and possible self-intersections must be
resolved. Boolean operations 011 meshes can be implemf'.nted as described in [9].

In the case of material addition, two meshes are coml1ined. Instead of tol
erating overlapping meshes, the overlaJ1ped regions are madf' compatible. This
could 11e done by a refinement, followed by a smoothing step. See Figure 18
for a 2D illustration. In the case of euts, the elements fully overlapped lllUSt be
removed. P<Lrtially overlapped elements are cut and must be healed. In both
cases the resulting mesh will be denser in and near ove.rlapped regions. TIllS
may be desirable from physical considerations, but where it is undesirable, a
mesh-coarsening operation must be applied that lowers the lllesh density se
lectively; see also Figure 19. This is in a sense the inverse operation of mesh
refinement.

Figure 19: Mesh Coarsening Applied to Mesh of Figure 18
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Modifying operations such as chamfers and rounds are best implemented as
a form of cut, in which the newly interpolated surface cuts through the mesh
near the edges and vertices involved. Other modifying operations are analogous.
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